
This book contains the official documentation for all APIs which Praesidium makes available to its
clients

Event Publishing Specification
User Management REST API

Praesidium APIs

This document provides the build specification to clients who wish to receive learning event
notifications programmatically.

2023-03-15 Added several refX fields to event_specific_detail

2023-01-20
Clarified meaning of UUID in eventContext
Corrected typo in learning_path_completed sample
payload

2022-12-20 Added LEARNING_PATH_COMPLETED event type

2022-12-13 Corrected payload property names from camel case to
snake case

2022-01-12
Added first_name and last_name fields to
COURSE_COMPLETED payload in event_specific_detail to
aid with the resolution of matching errors

In general, a client will reach out to Praesidium to identify relevant events and an endpoint to
which to publish them in near real-time. Authentication credentials (to be used with HTTP Basic
Authentication) may be provided securely to Praesidium as well. Praesidium will then set up the
event subscription for the client in question. From the time of setup onward, any relevant events
that happen will be communicated in near real-time to the endpoint specified by the client.

The event payload will take the form of a JSON Object as follows:

Event Publishing
Specification

Changelog

Overview

Event Payload

{

	"version": <STRING>,

 "event_type": <STRING>,

	"event_timestamp": <STRING>,

	"event_context": <JSON>,

	"event_specific_detail": <JSON>

}

where
version - the version string (value: "1.0")
event_type - what kind of event is being reported. Event type will determine the structure of
event_context (see below)
event_timestamp - a UTC timestamp in ISO format (i.e. YYYY-MM-DD HH24:MM:SS)
event_context - a JSON object with a specific structure depending upon event_type
event_specific_detail - a JSON object with additional contextual information that may differ
depending on event_type

In keeping with general RESTful principles, HTTP Status codes should be used. A return value of
400 should be used if the event payload violates the specification above or is otherwise
malformed. A return value of 200, 201 or 202 should be returned to indicate that the event record
was successfully received.

The event context structure will consist of 2 fields inside the JSON object

1. uuid - This field will contain the UUID of the user as returned by user creation via the REST
API

2. user – This field will contain the email address needed to identify the user who completed
the course

3. course – This field will contain a JSON object with 2 fields:
1. id: the course sku for the course completed
2. name: the course name for the course completed

The event_specific_detail field now contains an object user_detail with the following fields:

first_name
last_name
clientExternalId - this field will hold the value from the Academy user record that the client
has provided uniquely identifying this user in their system. (Note: this field may be null if
the client is not using this feature.
ref3 - this corresponds to the ref3 element in the Academy user record
ref4 - this corresponds to the ref4 element in the Academy user record
ref5 - this corresponds to the ref5 element in the Academy user record
ref7 - this corresponds to the ref7 element in the Academy user record
ref8 - this corresponds to the ref8 element in the Academy user record
ref9 - this corresponds to the ref9 element in the Academy user record

Example Payload

Accepted Return Values

Event Types
COURSE_COMPLETED

The event context structure will consist of 2 fields inside the JSON object

1. uuid - This field will contain the UUID of the user as returned by user creation via the REST
API

2. user – This field will contain the email address needed to identify the user who completed
the course

3. learning_path – This field will contain a JSON object with 2 fields:
1. id: the learning path sku for the learning path completed
2. name: the learning path name for the learning path completed

The event_specific_detail field now contains an object user_detail with the following fields:

first_name

{

	"version": "1.0",

 "event_type": "COURSE_COMPLETED",

	"event_timestamp": "2018-03-01 17:45:37",

	"event_context": {

 "uuid": "aaaaaaaa-bbbb-cccc-dddd-ffffffffffff",

 "user": "email@gmail.com",

 "course": {

 "id": "CON20938ES",

 "name": "Duty to Report: Mandated Reporter"

 }

 },

	"event_specific_detail": {

 "user_detail": {

 "first_name": "Tester",

 "last_name": "Testerman",

 "clientExternalId": "1234569",

 "ref3": "arbitrary text",

 "ref4": "arbitrary text2",

 "ref5": "arbitrary text3",

 "ref7": "arbitrary text4",

 "ref8": "arbitrary text5",

 "ref9": "arbitrary text6",

 }

 }

}

LEARNING_PATH_COMPLETED

last_name
clientExternalId - this field will hold the value from the Academy user record that the client
has provided uniquely identifying this user in their system. (Note: this field may be null if
the client is not using this feature.
ref3 - this corresponds to the ref3 element in the Academy user record
ref4 - this corresponds to the ref4 element in the Academy user record
ref5 - this corresponds to the ref5 element in the Academy user record
ref7 - this corresponds to the ref7 element in the Academy user record
ref8 - this corresponds to the ref8 element in the Academy user record
ref9 - this corresponds to the ref9 element in the Academy user record

Example Payload

{

	"version": "1.0",

 "event_type": "LEARNING_PATH_COMPLETED",

	"event_timestamp": "2018-03-01 17:45:37",

	"event_context": {

 "uuid": "aaaaaaaa-bbbb-cccc-dddd-ffffffffffff",

 "user": "email@gmail.com",

 "learning_path": {

 "id": "CONLP10023EN",

 "name": "Duty to Report: Mandated Reporter"

 }

 },

	"event_specific_detail": {

 "user_detail": {

 "first_name": "Tester",

 "last_name": "Testerman",

 "clientExternalId": "1234569",

 "ref3": "arbitrary text",

 "ref4": "arbitrary text2",

 "ref5": "arbitrary text3",

 "ref7": "arbitrary text4",

 "ref8": "arbitrary text5",

 "ref9": "arbitrary text6",

 }

 }

}

This endpoint will allow a client to manually trigger the mechanism which sends course completion
events back to client systems. The client can specify an endpoint to which to send the test event
payload. The client will send a payload to the Praesidium endpoint and a success response will be
sent to the endpoint that the client specified.

Endpoint: https://test.praesidiumacademy.com/portal/event_pub_webhooks/client_course_action

Method: POST

Sample Payload (note the "T" embedded in the "date" field format)

Sample Response (HTTP 200)

Testing
COURSE_COMPLETED Test Endpoint

{

	"client_id": "35F5C5A985D111EB857A0A3ECA36592D",

 "user_guid": "584adf35-85d1-11eb-857a-0a3eca36592d",

 "email": "lcarl@notreallythere.com",

 "location_guid": "5f383262-85d1-11eb-857a-0a3eca36592d",

 "courseSku": "TCCE1001",

 "date": "2021-03-11T12:01:03",

 "url": "https://test.client.eventpublication/endpoint"

}

Note that the url parameter is optional. When present, the current client event publishing
endpoint will be changed to the url value in the payload and will be the endpoint used until it
is changed again.

{

 "message": "success"

}

https://test.praesidiumacademy.com/portal/event_pub_webhooks/client_course_action

This document details the RESTful API methods available to manage users for Praesidium clients.

2024-08-18 Added note about ignoring duplicate requests

2023-10-30

Addition of content removal capabilities to the
API

New Endpoint for removal of content
from User

Addition of content re-enrollment capabilities to
the API

New Endpoint for re-enrollment content
in User

Updated the "Create a new user" notes to
explain changes to the functionality of the
HTTP 400 errors that may occur.
For "Create a new user", added a note about
Academy requiring unique emails

2023-01-18

Added examples with and without content
specification
Updated general object structure to specify
some fields as optional/ignored
Noted lack of content return from GET
Noted which UUIDs will be provided by
Praesidium and the general format in which
they will be provided

2022-10-18

Added content enrollment to API
User Creation & Update impacted
New endpoint for enrollment of User in
content
added content into structure of User
object

Clarification of JWT expiration timeframe

2021-05-18
Added instructions on how to use refresh token
changed field name "program-type" in user
object to "program_type" for consistency

User Management REST API

Changelog

2021-02-26

Added structure of User Object
Endpoint URLs updated
Sample requests updated to match structure
and to use properly formatted UUIDs
Clarified return value of creation endpoint
Fixed typo in authentication success response
Role details and descriptions added

Authorization will be handled by Oauth2 using JWT. There are methods provided for only one
resource: Users. All URLs will be specified without hostname, as only the hostname need change to
identify the test environment versus production.

Methods are available to perform the following operations:

1. Retrieve a User Record (GET)
2. Create a new User Record (POST)
3. Update a User Record (PUT)
4. Deactivate a user record (PUT) - remove system access
5. Add content to a user record (PUT)

URL /portal/authenticate/login_api

Method POST

Overview

Unless otherwise specified, all services require the JWT token to be passed in the
Authorization: Bearer header

In addition to all other potential error messages listed below, any endpoint may
return HTTP 429 Too Many Requests. If this code is returned, a Retry-After header
will be attached to the message to indicate how long to wait before retrying the
request.

Any duplicate requests to change data (e.g. Create, Update, Deactivate, Enroll)
within 30 seconds will be ignored.

Authentication
JWT expiration is 900 seconds (15 minutes)

Data Format

The only valid scope value is: "prae.client.api.user"

{

	"grant_type": "client_credentials",

 "client_id": "<Praesidium provided

client ID>",

	"client_secret": "<Praesidium provided

client secret>",

	"scope": ["<scope1>", "<scope2>", ...,

"<scopeN>"]

}

Success Response

HTTP Status Code: 200

The Refresh token can be used to generate a new access
token (if it has not expired) by passing it in the
Authorization: Bearer header and using an HTTP GET to
retrieve /portal/session/refresh_jwt

{

	"access_token": "<JWT>",

 "token_type": "bearer",

	"expires_in": 900,

	"refresh_token": "<JWT>"

}

Failure Response

Authentication Error
HTTP Status Code: 401 Authorization Required

Input Validation Error
HTTP Status Code: 400 Bad Request

Invalid Scope Error
HTTP Status Code: 400 Bad Request

{

	"error": "invalid_client",

 "error_description": "[string]",

	"expires_uri": "[reserved for future use]"

}

{

	"error": "invalid_request",

 "error_description": "[string]",

	"expires_uri": "[reserved for future use]"

}

{

	"error": "invalid_client",

 "error_description": "[string]",

	"expires_uri": "[reserved for future use]"

}

Example

// JQuery

$.ajax({

 url: "/portal/authenticate/login_api",

 dataType: "json",

 data: {

 "grant_type": "client_credentials",

 "client_id": "xyz_client",

 "client_secret": "itsasecret",

 "scope": [

 "prae.client.api.user"

]

 },

 type: "POST",

 success: function(r) {

 console.log(r);

 }

});

All data fields in the user object will fall into one of five categories:

1. Principal – this category is for personal information that is primarily used to identify the
user

2. System – this category is for system information, such as roles, status (active or inactive)
3. Person – this category is for other personal information that is not used to identify the

user
4. Context – this category is for information describing the contexts that apply to the user
5. Attributes – this category is for information describing the user that can be used to

determine which course assignments are applied, and for reporting purposes

So, in general a user object (for the purpose of this API is defined by the following format:

Resource: User

Structure of the User Object

{

 "principal": {

 "UUID": "<string>",

Currently, the only valid content_type-values are "course" and "learning path"

The only valid role-values are:

Learner: The user in question can only take courses, and has no administrative access
Administrator: The user in question can edit user info for non-administrative user
Administrator - View Only: The user in question has administrative access, but cannot
edit any information

 "first_name": "<string>",

 "last_name": "<string>",

 "email": "<email>",

 "client_external_id": "<string>"

 },

 "system": {

 "status": "<(active | inactive)>",

 "role": "<role-value>"

 },

 "person": {

 },

 "context": {

 "client": "<UUID>",

 "locations": [

 "<UUID1>",

 "<UUID2>",

 ...,

 "<UUIDN>"

],

 "content": [

 {

 "uuid": "<UUID>",

 "type": "<content_type-value>"

 },

 ...

]

 },

 "attributes": {

 "program_type": "<program_type-value>",

 "position": "<position-value>"

 }

}

General Notes about the fields included in the user object relevant to individual REST operations

URL /portal/lms_api/v2/user/{UUID}

Method GET

Path Parameters Required
UUID - UUID for the desired user

Success Response HTTP Status Code: 200
User object (structure as described above)

When using a POST to create a user, the UUID field at the top level is optional.

The "content" object under the "context" object is optional when passing a user object to
POST for creation or PUT for general update

In addition, the "content" object will never be specified in a return value from an API call for
performance reasons

The UUIDs under "client", "locations" and "content" will be provided by Praesidium (csv file
will contain UUID, name for client and locations, and will additionally contain content_type
and SKU for courses/learning paths)

Retrieve a User Record

Failure Response

Input Validation Error
HTTP Status Code: 400 Bad Request

Not Found Error
HTTP Status Code: 404 Not Found

Internal Server Error
HTTP Status Code: 500 Internal Server Error

status - integer HTTP status
code - internal error code (if available, otherwise HTTP
Status)
message - Human readable error messages, separated by
new lines
technicalMessage - Human readable error message,
separated by new lines, containing technical detail

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

Example

// JQuery

$.ajax({

 url: "/portal/lms_api/v2/user/aaaaaaaa-

bbbb-cccc-dddd-5ce2287baaa",

 type: "GET",

 success: function(r) {

 console.log(r);

 }

});

URL /portal/lms_api/v2/user

Method POST

Data Parameters
Required
User object (structured as above). Any value in the
UUID field will be ignored.

Success Response
HTTP Status Code: 201
User object (structure as described above). The UUID
field will contain the UUID of the newly created user

Create a New User

Upon creation, the user will be automatically enrolled in any content included in the payload

Email addresses must be unique across all Academy.

If an attempt is made to create a user with an email that already exists in Academy, the
technicalMessage property of the HTTP 400 error will now contain the id of the user with the
existing email IF that user falls under the requesting client's hierarchy.

Failure Response

Input Validation Error
HTTP Status Code: 400 Bad Request

Internal Server Error
HTTP Status Code: 500 Internal Server Error

status - integer HTTP status
code - internal error code (if available, otherwise HTTP
Status)
message - Human readable error messages, separated by
new lines
technicalMessage - Human readable error message,
separated by new lines, containing technical detail

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

Example

// JQuery (without content)

$.ajax({

 url: "/portal/lms_api/v2/user",

 type: "POST",

 dataType: "json",

 data: {

 "principal": {

 "first_name": "John",

 "last_name": "Smith",

 "email": "jsmith@example.com",

 "client_external_id": "123456958"

 },

 "system": {

 "status": "active",

 "role": "Administrator - View Only"

 },

 "person": {},

 "context": {

 "client": "aaaaaaaa-bbbb-cccc-dddd-

5ce2287baaa",

 "locations": [

 "aaaaaaaa-bbbb-cccc-dddd-

5ce1207baaa"

]

 },

 "attributes": {

 "position": "director (camp)",

 "program_type": "aquatics"

 }

 },

 success: function(r) {

 console.log(r);

 }

});

// JQuery (with content)

$.ajax({

url: "/portal/lms_api/v2/user",

type: "POST",

dataType: "json",

data: {

"principal": {

"first_name": "John",

"last_name": "Smith",

"email": "jsmith@example.com",

"client_external_id": "123456958"

},

"system": {

"status": "active",

"role": "Administrator - View Only"

},

"person": {},

"context": {

"client": "aaaaaaaa-bbbb-cccc-dddd-

5ce2287baaa",

"locations": [

"aaaaaaaa-bbbb-cccc-dddd-5ce1207baaa"

]

},

"attributes": {

"position": "director (camp)",

"program_type": "aquatics"

}

},

success: function(r) {

console.log(r);

}

});

Note: upon completion of other updates, the user will be automatically enrolled in any content
included in the payload

URL /portal/lms_api/v2/user/{UUID}

Method PUT

Path Parameters Required
UUID UUID for the user to be updated

Data Parameters Required
User object (structured as above).

Success Response HTTP Status Code: 200
User object (structure as described above).

Update an Existing User

Failure Response

Authorization Error
HTTP Status Code: 403

Input Validation Error
HTTP Status Code: 400 Bad Request

Not Found Error
HTTP Status Code: 404 Not Found

Internal Server Error
HTTP Status Code: 500 Internal Server Error

status - integer HTTP status
code - internal error code (if available, otherwise HTTP
Status)
message - Human readable error messages, separated by
new lines
technicalMessage - Human readable error message,
separated by new lines, containing technical detail

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

Example

// JQuery (without content)

$.ajax({

 url: "/portal/lms_api/v2/user/aaaaaaaa-

bbbb-cccc-dddd-5ce9942baaa",

 type: "PUT",

 dataType: "json",

 data: {

 "principal": {

 "first_name": "John",

 "last_name": "Smith",

 "email": "jsmith@example.com",

 "client_external_id": "123456958"

 },

 "system": {

 "status": "active",

 "role": "Administrator - View Only"

 },

 "person": {},

 "context": {

 "client": "aaaaaaaa-bbbb-cccc-dddd-

5ce2287baaa",

 "locations": [

 "aaaaaaaa-bbbb-cccc-dddd-

5ce1207baaa"

]

 },

 "attributes": {

 "position": "director (camp)",

 "program_type": "aquatics"

 }

 },

 success: function(r) {

 console.log(r);

 }

});

// JQuery (with content)

$.ajax({

url: "/portal/lms_api/v2/user/aaaaaaaa-

bbbb-cccc-dddd-5ce9942baaa",

type: "PUT",

dataType: "json",

data: {

"principal": {

"first_name": "John",

"last_name": "Smith",

"email": "jsmith@example.com",

"client_external_id": "123456958"

},

"system": {

"status": "active",

"role": "Administrator - View Only"

},

"person": {},

"context": {

"client": "aaaaaaaa-bbbb-cccc-dddd-

5ce2287baaa",

"locations": [

"aaaaaaaa-bbbb-cccc-dddd-5ce1207baaa"

]

},

"attributes": {

"position": "director (camp)",

"program_type": "aquatics"

}

},

success: function(r) {

console.log(r);

}

});

URL /portal/lms_api/v2/user/{UUID}/deactivate

Method PUT

Path Parameters Required
UUID - UUID for the desired user

Success Response HTTP Status Code: 200
User object (structure as described above)

Deactivate an Existing User (Remove system access)

Failure Response

Authorization Error
HTTP Status Code: 403

Input Validation Error
HTTP Status Code: 400 Bad Request

Not Found Error
HTTP Status Code: 404 Not Found

Internal Server Error
HTTP Status Code: 500 Internal Server Error

status - integer HTTP status
code - internal error code (if available, otherwise HTTP
Status)
message - Human readable error messages, separated by
new lines
technicalMessage - Human readable error message,
separated by new lines, containing technical detail

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

Example

// JQuery

$.ajax({

 url: "/portal/lms_api/v2/user/aaaaaaaa-

bbbb-cccc-dddd-5ce2287baaa/deactivate",

 type: "PUT",

 success: function(r) {

 console.log(r);

 }

});

URL /portal/lms_api/v2/user/{UUID}/enrollContent

Method PUT

Path Parameters Required
UUID UUID for the user to be updated

Data Parameters

Required
Content Listing (structured as below).

uuid - course UUID (Praesidium provided)
type - only the values "course" and "learning path" are
available

{

	"content": [

 {

 "uuid": "[string]",

 "type": "[string]"

 },

 ...,

]

}

Success Response HTTP Status Code: 200
User object (structure as described above).

Add Content to an Existing User

Failure Response

Authorization Error
HTTP Status Code: 403

Input Validation Error
HTTP Status Code: 400 Bad Request

Not Found Error
HTTP Status Code: 404 Not Found

Internal Server Error
HTTP Status Code: 500 Internal Server Error

status - integer HTTP status
code - internal error code (if available, otherwise HTTP
Status)
message - Human readable error messages, separated by
new lines
technicalMessage - Human readable error message,
separated by new lines, containing technical detail

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

Example

// JQuery

$.ajax({

 url: "/portal/lms_api/v2/user/aaaaaaaa-

bbbb-cccc-dddd-5ce9942baaa/enrollContent",

 type: "PUT",

 dataType: "json",

 data: {

 "content": [

 {

 "uuid": "aaaaaaaa-bbbb-cccc-dddd-

5ce1248baaa",

 "type": "course"

 }

]

 },

 success: function(r) {

 console.log(r);

 }

});

WARNING: Removing a Learning Path from a user will NOT remove the corresponding courses

URL /portal/lms_api/v2/user/{UUID}/removeContent

Method PUT

Path Parameters Required
UUID UUID for the user to be updated

Remove Content from an Existing User

Data Parameters

Required
Content Listing (structured as below).

uuid - course UUID (Praesidium provided)
type - only the values "course" and "learning path" are
available

{

	"content": [

 {

 "uuid": "[string]",

 "type": "[string]"

 },

 ...,

]

}

Success Response HTTP Status Code: 200
User object (structure as described above).

Failure Response

Authorization Error
HTTP Status Code: 403

Input Validation Error
HTTP Status Code: 400 Bad Request

Not Found Error
HTTP Status Code: 404 Not Found

Internal Server Error
HTTP Status Code: 500 Internal Server Error

status - integer HTTP status
code - internal error code (if available, otherwise HTTP
Status)
message - Human readable error messages, separated by
new lines
technicalMessage - Human readable error message,
separated by new lines, containing technical detail

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

Example

// JQuery

$.ajax({

 url: "/portal/lms_api/v2/user/aaaaaaaa-

bbbb-cccc-dddd-5ce9942baaa/removeContent",

 type: "PUT",

 dataType: "json",

 data: {

 "content": [

 {

 "uuid": "aaaaaaaa-bbbb-cccc-dddd-

5ce1248baaa",

 "type": "course"

 }

]

 },

 success: function(r) {

 console.log(r);

 }

});

Note: User’s content that is re-enrolled will be set to a not-started status in Academy. Any prior
completion certificates will be unchanged.

WARNING: Re-Enrolling a user in a Learning Path will NOT re-enroll that user in the corresponding
courses

URL /portal/lms_api/v2/user/{UUID}/reEnrollContent

Method PUT

Path Parameters Required
UUID UUID for the user to be updated

Re-Enroll Content in an Existing User

Data Parameters

Required
Content Listing (structured as below).

uuid - course UUID (Praesidium provided)
type - only the values "course" and "learning path" are
available

{

	"content": [

 {

 "uuid": "[string]",

 "type": "[string]"

 },

 ...,

]

}

Success Response HTTP Status Code: 200
User object (structure as described above).

Failure Response

Authorization Error
HTTP Status Code: 403

Input Validation Error
HTTP Status Code: 400 Bad Request

Not Found Error
HTTP Status Code: 404 Not Found

Internal Server Error
HTTP Status Code: 500 Internal Server Error

status - integer HTTP status
code - internal error code (if available, otherwise HTTP
Status)
message - Human readable error messages, separated by
new lines
technicalMessage - Human readable error message,
separated by new lines, containing technical detail

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

{

	"status": [integer],

 "code": "[string]",

 "message": "[string]",

 "technicalMessage": "[string]",

	"infoURI": "[reserved for future use]"

}

Example

// JQuery

$.ajax({

 url: "/portal/lms_api/v2/user/aaaaaaaa-

bbbb-cccc-dddd-

5ce9942baaa/reEnrollContent",

 type: "PUT",

 dataType: "json",

 data: {

 "content": [

 {

 "uuid": "aaaaaaaa-bbbb-cccc-dddd-

5ce1248baaa",

 "type": "course"

 }

]

 },

 success: function(r) {

 console.log(r);

 }

});

